Operasi Aljabar pada Matriks: Penjumlahan, Pengurangan & Perkalian | Matematika Kelas 11

operasi aljabar pada matriks dan sifat-sifatnya

Artikel Matematika kelas 11 ini menjelaskan cara menyelesaikan operasi aljabar pada matriks, mulai dari menjumlahkan, mengurangkan, sampai mengalikan dua atau lebih matriks.

 

Kamu suka nonton film fiksi ilmiah? Kalo iya, kamu harus coba tonton salah satu film yang pernah terkenal di tahun 2000-an, deh. “The Matrix” judulnya. Singkatnya, film ini menceritakan tentang kehidupan umat manusia yang sebenarnya telah diatur dalam matrix, sebuah program hasil ciptaan mesin-mesin jahat yang ingin menundukkan populasi manusia. Akibatnya, perang antara mesin dengan manusia pun tidak dapat dihindarkan dan matrix harus segera dihancurkan.

Mantap! Keren banget nggak tuh kelihatannya. Pokoknya, bagi kamu yang suka nonton film sambil mikir, “The Matrix” harus masuk list tontonan kamu saat senggang atau bosan.

operasi aljabar matriks

Adegan di film The Matrix (Sumber: giphy.com)

 

Hmm, ngomongin film yang judulnya matrix, jadi inget, di Matematika juga ada lho materi tentang matriks. Tapi, pengertiannya tentu beda ya dengan matrix yang ada di film. Kalau di Matematika, matriks adalah kumpulan bilangan yang disusun berdasarkan urutan baris dan kolom, serta dibatasi oleh sebuah tanda kurung.

Nah, kali ini, kita akan membahas materi tentang matriks, teman-teman. Eits! Bukan matrix yang ada di film “The Matrix” itu ya, melainkan matriks yang ada dalam pelajaran Matematika. Eh, eh, jangan sedih gitu dong denger kata Matematika. Materinya juga nggak kalah seru, kok!

Sebenarnya, di artikel sebelumnya, matriks juga sudah pernah dibahas, nih. Tapi, belum semuanya. Hanya sekedar pengenalan tentang matriks dan komponen-komponennya, jenis-jenis matriks, dan transpose suatu matriks saja. Jadi, buat kamu yang belum paham betul apa itu matriks, bisa baca dulu artikelnya lewat link di bawah ini, ya.

Baca Juga: Cari Tahu Lebih Dalam Tentang Matriks, Yuk!

Oke, berhubung penjelasan awal tentang matriks sudah dibahas, kita akan lanjut ke materi berikutnya, yaitu operasi aljabar matriks. Terdapat tiga macam bentuk operasi aljabar pada matriks, yaitu operasi penjumlahan, pengurangan, dan perkalian. Kira-kira, bagaimana ya cara menyelesaikan masing-masing operasi tersebut? Mari kita simak penjelasannya berikut ini!

 

Operasi Penjumlahan Matriks

Misalkan terdapat dua buah matriks, yaitu matriks A dan matriks B. Jika matriks C adalah matriks penjumlahan dari A dengan B, maka matriks C dapat diperoleh dengan menjumlahkan setiap elemen pada matriks A yang seletak dengan setiap elemen pada matriks B. Oleh karena itu, syarat agar dua atau lebih matriks dapat dijumlahkan adalah harus memiliki ordo yang sama.

sifat-sifat penjumlahan matriks

 

Contoh:

operasi aljabar matriks

Hasil dari A + B dapat diperoleh dengan menjumlahkan setiap elemen matriks A yang seposisi dengan setiap elemen matriks B.

 

operasi aljabar matriks

 

Paham, ya. Selanjutnya ada operasi pengurangan matriks. Tapi, sebelum masuk ke bahasan tentang operasi pengurangan matriks, kamu harus tahu dulu istilah tentang lawan suatu matriks. Wadaw! Apaan, tuh?!

Baca Juga: Cara Mencari Determinan dan Invers Matriks

Namanya juga lawan, gaes. Pasti antara matriks yang satu dengan matriks yang lain akan saling bertentangan. Gampangnya sih, kalau yang satu nilainya positif, pasti yang satu lagi nilainya bakal negatif. Jadi, kalau ada matriks A, maka lawan matriks A adalah suatu matriks yang elemen-elemennya merupakan lawan dari elemen-elemen matriks A tersebut. 

A = [aij], lawan matriks A ditulis -A = [-aij]

 

Operasi Pengurangan Matriks

Misalkan terdapat dua buah matriks, yaitu matriks A dan matriks B. Jika matriks C adalah matriks pengurangan dari A dengan B, maka matriks C dapat diperoleh dengan mengurangkan setiap elemen pada matriks A yang seletak dengan setiap elemen pada matriks B.

Pada dasarnya, pengurangan sama halnya dengan penjumlahan terhadap lawan bilangan penambah, sehingga pengurangan matriks A dengan matriks B dapat diartikan sebagai penjumlahan matriks A dengan lawan matriks B.

A – B = A + (-B)

Sama halnya dengan syarat penjumlahan matriks, dua atau lebih matriks hanya dapat dikurangkan apabila memiliki ordo yang sama, teman-teman. Nah, supaya kamu nggak bingung, kita coba kerjakan contoh soal di bawah ini, yuk. Gaasss~

Contoh:

operasi aljabar matriks

Hasil dari A – B dapat diperoleh dengan mengurangkan setiap elemen matriks A yang seposisi dengan setiap elemen matriks B.

 

operasi aljabar matriks

 

Gimana? Paham ya sampai di sini. Kalau gitu, kita lanjut ke operasi aljabar matriks berikutnya, yok!

 

Operasi Perkalian Matriks

Operasi perkalian matriks dibagi menjadi dua nih, yaitu perkalian matriks dengan bilangan real (skalar) dan perkalian antarmatriks. Kita simak pembahasan berikut untuk tahu bagaimana cara menyelesaikannya, ya.

 

1. Perkalian Matriks dengan Bilangan Real (Skalar)

Misalkan terdapat matriks A berordo m × n dan suatu bilangan real (skalar), yaitu k. Perkalian antara matriks A dengan skalar k dapat ditulis dengan kA yang diperoleh dengan mengalikan setiap elemen matriks A dengan skalar k.

 

operasi aljabar matriks

 

Perkalian suatu matriks dengan skalar dapat dilakukan tanpa syarat tertentu. Artinya, semua matriks dengan ordo sembarang dapat dikalikan dengan bilangan real (skalar).

sifat-sifat perkalian matriks dengan bilangan real

 

2. Perkalian Matriks dengan Matriks

Misalkan terdapat dua buah matriks, yaitu matriks A dengan ordo m × p dan matriks B dengan ordo p × n. Perkalian matriks A dengan matriks B dapat ditulis dengan A × B yang diperoleh dari penjumlahan hasil kali elemen-elemen yang bersesuaian pada baris ke-i matriks A dengan kolom ke-j matriks B, dengan i = 1, 2, 3, …, m dan j = 1, 2, 3, …, n.

Syarat agar dua buah matriks dapat dikalikan adalah matriks pertama harus memiliki jumlah kolom yang sama dengan jumlah baris pada matriks kedua. Ordo matriks hasil perkalian dua buah matriks adalah jumlah baris pertama dikali jumlah kolom ke dua.

Hmm… Pasti kamu bingung ya maksudnya gimana. Oke, supaya kamu nggak bingung, kita coba kerjakan soal di bawah ini, yuks!

Contoh:

matriks 4

Jumlah kolom matriks A adalah 2 dan jumlah baris matriks B adalah 2. Matriks A memiliki jumlah kolom yang sama dengan jumlah baris matriks B, sehingga syarat perkalian antarmatriks sudah terpenuhi.

Selanjutnya, kita dapat mengalikan setiap elemen baris di matriks A dengan setiap elemen kolom di matriks B. Coba kamu perhatikan lingkaran berwarna pada tiap-tiap elemen matriks di bawah ini, ya. Lingkaran merah dipasangkan dengan lingkaran merah dan lingkaran biru dipasangankan dengan lingkaran biru.

Baca Juga: Yuk, Pahami Konsep Turunan Fungsi Aljabar!

Jadi, a11 akan dikalikan dengan b11, a12 dikalikan dengan b21, a21 dikalikan dengan b11, dan a22 dikalikan dengan b21.

operasi aljabar matriks

Lalu, jumlahkan hasil kali elemen-elemennya menjadi seperti ini:

operasi aljabar matriks

Sehingga, hasil kali matriks A dengan matriks B adalah sebagai berikut:

operasi aljabar matriks

Mudah ya, teman-teman. Meskipun begitu, kamu harus banyak berlatih soal, nih. Kenapa? Biasanya, kamu akan masih suka bingung dan kadang suka tertukar saat mengalikan elemen matriks yang satu dengan elemen matriks yang lainnya. Jadi, jangan malas untuk sekedar latihan soal, ya!

sifat-sifat perkalian matriks

 

Oke, selesai sudah materi operasi aljabar pada matriks ini, ya. Gimana? Seru kan belajar matriks! Nah, kalau kamu masih merasa latihan soal di atas tadi kurang untuk melatih kemampuan kamu, di bawah ini masih ada satu soal lagi yang bisa kamu kerjakan, nih. Coba kamu kerjakan dan tulis jawabanmu di kolom komentar, ya!

Baca Juga: Apa Itu Notasi Sigma?

contoh soal operasi aljabar pada matriks

 

Belajar Matematika memang nggak mudah, guys. Butuh ketekunan dan kesabaran. Kalau kamu ada materi yang masih sulit untuk dimengerti, yuk tanyakan langsung pertanyaanmu itu lewat Roboguru. Tutor akan membantu kamu dalam membahas soal dan mengerti pelajaran via live chat!

IDN CTA Blog roboguru plus Ruangguru

Referensi:

Wirodikromo, S. dan Darmanto, M. (2019). Matematika untuk SMA/MA Kelas XI kelompok Wajib 2. Jakarta: Erlangga.

Hani Ammariah

Content Performance Coordinator at Ruangguru. I like to write things that are useful and also not. But I hope, you can learn something from this post. ^^